Publications

  1. Coupling chemosensory array formation and localization

    Alvarado A, Kjær A, Yang W, Mann P, Briegel A, Waldor MK, Ringgaard S., Elife. 2017 Oct 23;6. pii: e31058, doi: 10.7554/eLife.31058

    Read abstract

    Chemotaxis proteins organize into large, highly ordered, chemotactic signaling arrays, which in Vibrio species are found at the cell pole. Proper localization of signaling arrays is mediated by ParP, which tethers arrays to a cell pole anchor, ParC. Here we show that ParP's C-terminus integrates into the core-unit of signaling arrays through interactions with MCP-proteins and CheA. Its intercalation within core-units stimulates array formation, whereas its N-terminal interaction domain enables polar recruitment of arrays and facilitates its own polar localization. Linkage of these domains within ParP couples array formation and localization and results in controlled array positioning at the cell pole. Notably, ParP's integration into arrays modifies its own and ParC's subcellular localization dynamics, promoting their polar retention. ParP serves as a critical nexus that regulates the localization dynamics of its network constituents and drives the localized assembly and stability of the chemotactic machinery, resulting in proper cell pole development.

  2. Uncharacterized bacterial structures revealed by electron cryotomography

    Dobro MJ, Oikonomou CM, Piper A, Cohen J, Guo K, Jensen T, Tadayon J, Donermeyer J, Park Y, Solis BA, Kjær A, Jewett AI, McDowall AW, Chen S, Chang YW, Shi J, Subramanian P, Iancu CV, Li Z, Briegel A, Tocheva EI, Pilhofer M, Jensen GJ., J Bacteriol. 2017 Jun 12, pii: JB.00100-17. doi: 10.1128/JB.00100-17

    Read abstract

    Electron cryotomography (ECT) can reveal the native structure and arrangement of macromolecular complexes inside intact cells. This technique has greatly advanced our understanding of the ultrastructure of bacterial cells. Rather than undifferentiated bags of enzymes, we now view bacteria as structurally complex assemblies of macromolecular machines. To date, our group has applied ECT to nearly 90 different bacterial species, collecting more than 15,000 cryotomograms. In addition to known structures, we have observed several, to our knowledge, uncharacterized features in these tomograms. Some are completely novel structures; others expand the features or species range of known structure types. Here we present a survey of these uncharacterized bacterial structures in the hopes of accelerating their identification and study, and furthering our understanding of the structural complexity of bacterial cells.IMPORTANCE Bacteria are more structurally complex than is commonly appreciated and we present here a number of interesting structures that will initiate new lines of research investigating their identities and roles.

  3. LytM factors affect the recruitment of autolysins to the cell division site in Caulobacter crescentus

    Zielińska A, Billini M, Möll A, Kremer K, Briegel A, Izquierdo Martinez A, Jensen GJ, Thanbichler M., Mol Microbiol. 2017 Aug 23, PMID: 28833791

    Read abstract

    Most bacteria possess a peptidoglycan cell wall that determines their morphology and provides mechanical robustness during osmotic challenges. The biosynthesis of this structure is achieved by a large set of synthetic and lytic enzymes with varying substrate specificities. Although the biochemical functions of these proteins are conserved and well-investigated, the precise roles of individual factors and the regulatory mechanisms coordinating their activities in time and space remain incompletely understood. Here, we comprehensively analyze the autolytic machinery of the alphaproteobacterial model organism Caulobacter crescentus, with a specific focus on LytM-like endopeptidases, soluble lytic transglycosylases and amidases. Our data reveal a high degree of redundancy within each protein family but also specialized functions for individual family members under stress conditions. In addition, we identify two lytic transglycosylases and an amidase as new divisome components that are recruited to midcell at distinct stages of the cell cycle. The midcell localization of these proteins is affected by two LytM factors with degenerate catalytic domains, DipM and LdpF, which may serve as regulatory hubs coordinating the activities of multiple autolytic enzymes during cell constriction and fission respectively. These findings set the stage for in-depth studies of the molecular mechanisms that control peptidoglycan remodeling in C. crescentus.

  4. His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays

    Haglin ER, Yang W, Briegel A, Thompson LK., Biochemistry. 2017 Sep 22, PMID: 28872847

    Read abstract

    Transmembrane chemotaxis receptors are found in bacteria in extended hexagonal arrays stabilized by the membrane and by cytosolic binding partners, the kinase CheA and coupling protein CheW. Models of array architecture and assembly propose receptors cluster into trimers of dimers that associate with one CheA dimer and two CheW monomers to form the minimal "core unit" necessary for signal transduction. Reconstructing in vitro chemoreceptor ternary complexes that are homogeneous and functional and exhibit native architecture remains a challenge. Here we report that His-tag-mediated receptor dimerization with divalent metals is sufficient to drive assembly of nativelike functional arrays of a receptor cytoplasmic fragment. Our results indicate receptor dimerization initiates assembly and precedes formation of ternary complexes with partial kinase activity. Restoration of maximal kinase activity coincides with a shift to larger complexes, suggesting that kinase activity depends on interactions beyond the core unit. We hypothesize that achieving maximal activity requires building core units into hexagons and/or coalescing hexagons into the extended lattice. Overall, the minimally perturbing His-tag-mediated dimerization leads to assembly of chemoreceptor arrays with native architecture and thus serves as a powerful tool for studying the assembly and mechanism of this complex and other multiprotein complexes.

  5. Recent advances and future prospects in bacterial and archaeal locomotion and signal transduction

    Sonia L. Bardy, Ariane Briegel, Simon Rainville and Tino Krell, Journal of Bacteriology, DOI: 10.1128/JB.00203-17

    Read abstract

    Unraveling the structure and function of two-component and chemotactic signaling along with different aspects related to motility of bacteria and archaea are key research areas in modern microbiology. Escherichia coli is the traditional model organism to study chemotaxis signaling and motility. However, the recent study of a wide range of bacteria and even some archaea with different lifestyles has provided new insight into the eco-physiology of chemotaxis, which is essential for the host establishment of different pathogens or beneficial bacteria. The expanded range of model organisms has also permitted the study of chemosensory pathways unrelated to chemotaxis, multiple chemotaxis pathways within an organism, and new types of chemoreceptors. This research has greatly benefitted from technical advances in the field of cryo-microscopy that continues to reveal with increasing resolution the complexity and diversity of large protein complexes like the flagellar motor or chemoreceptor arrays. In addition, sensitive instruments now allow for an increasing number of experiments to be conducted at the single-cell level, thereby revealing information that is beginning to bridge the gap between individual cells and population behavior. Evidence has also accumulated showing that bacteria have evolved different mechanisms for surface sensing, which appears to be mediated by flagella and possibly type IV pili, and that the downstream signaling involves chemosensory pathways and two-component system based processes. Herein we summarize the recent advances and research tendencies in this field as presented at the latest Bacterial Locomotion and Signal Transduction (BLAST XIV) conference.

  6. Morphology of the archaellar motor and associated cytoplasmic cone in Thermococcus kodakaraensis

    Ariane Briegel, Catherine M Oikonomou, Yi-Wei Chang, Andreas Kjær, Audrey N Huang, Ki Woo Kim, Debnath Ghosal, Hong H Nguyen, Dorothy Kenny, Rachel R Ogorzalek Loo, Robert P Gunsalus & Grant J Jensen, EMBO Reports, DOI 10.15252/embr.201744070

    Read abstract

    Archaeal swimming motility is driven by archaella: rotary motors attached to long extracellular filaments. The structure of these motors, and particularly how they are anchored in the absence of a peptidoglycan cell wall, is unknown. Here, we use electron cryotomography to visualize the archaellar basal body in vivo in Thermococcus kodakaraensis KOD1. Compared to the homologous bacterial type IV pilus (T4P), we observe structural similarities as well as several unique features. While the position of the cytoplas- mic ATPase appears conserved, it is not braced by linkages that extend upward through the cell envelope as in the T4P, but rather by cytoplasmic components that attach it to a large conical frus- tum up to 500 nm in diameter at its base. In addition to anchoring the lophotrichous bundle of archaella, the conical frustum associ- ates with chemosensory arrays and ribosome-excluding material and may function as a polar organizing center for the coccoid cells.

  7. Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis

    Qing Yao, Andrew I Jewett, Yi‐Wei Chang, Catherine M Oikonomou, Morgan Beeby, Cristina V Iancu, Ariane Briegel, Debnath Ghosal, Grant J Jensen, EMBO Journal, DOI 10.15252/embj.201696235

    Read abstract

    FtsZ, the bacterial homologue of eukaryotic tubulin, plays a central role in cell division in nearly all bacteria and many archaea. It forms filaments under the cytoplasmic membrane at the division site where, together with other proteins it recruits, it drives peptidoglycan synthesis and constricts the cell. Despite extensive study, the arrangement of FtsZ filaments and their role in division continue to be debated. Here, we apply electron cryotomography to image the native structure of intact dividing cells and show that constriction in a variety of Gram‐negative bacterial cells, including Proteus mirabilis and Caulobacter crescentus, initiates asymmetrically, accompanied by asymmetric peptidoglycan incorporation and short FtsZ‐like filament formation. These results show that a complete ring of FtsZ is not required for constriction and lead us to propose a model for FtsZ‐driven division in which short dynamic FtsZ filaments can drive initial peptidoglycan synthesis and envelope constriction at the onset of cytokinesis, later increasing in length and number to encircle the division plane and complete constriction.

  8. Progress and Potential of Electron Cryotomography as Illustrated by Its Application to Bacterial Chemoreceptor Arrays

    Ariane Briegel and Grant Jensen, Ann. Rev. Biophys, PMID: 28301773

    Read abstract

    Electron cryotomography (ECT) can produce three-dimensional images of biological samples such as intact cells in a near-native, frozen-hydrated state to macromolecular resolution (∼4 nm). Because one of its first and most common applications has been to bacterial chemoreceptor arrays, ECT’s contributions to this field illustrate well its past, present, and future. Al- though X-ray crystallography and nuclear magnetic resonance spectroscopy have revealed the structures of nearly all the individual components of chemoreceptor arrays, ECT has revealed the mesoscale information about how the components are arranged within cells. Receptors assemble into a universally conserved 12-nm hexagonal lattice linked by CheA/CheW rings. Membrane-bound arrays are single layered; cytoplasmic arrays are double layered. Images of in vitro reconstitutions have led to a model of how arrays assemble, and images of native arrays in different states have shown that the conformational changes associated with signal transduction are subtle, constraining models of activation and system cooperativity. Phase plates, better detectors, and more stable stages promise even higher resolution and broader application in the near future.

  9. Chemotaxis cluster 1 proteins form cytoplasmic arrays in Vibrio cholerae and are stabilized by a double signaling domain receptor DosM

    Ariane Briegel, Davi R. Ortega, Petra Mann, Andreas Kjær, Simon Ringgaard, and Grant J. Jensen, PNAS Early Edition, PMID: 1604693113

    Read abstract

    Nearly all motile bacterial cells use a highly sensitive and adaptable sensory system to detect changes in nutrient concentrations in the environment and guide their movements toward attractants and away from repellents. The best-studied bacterial chemoreceptor arrays are membrane-bound. Many motile bacteria contain one or more additional, sometimes purely cytoplasmic, chemoreceptor systems. Vibrio cholerae contains three chemotaxis clusters (I, II, and III). Here, using electron cryotomography, we explore V. cholerae’s cytoplasmic chemoreceptor array and establish that it is formed by proteins from cluster I. We further identify a chemoreceptor with an unusual domain architecture, DosM, which is essential for formation of the cytoplasmic arrays. DosM contains two signaling domains and spans the two-layered cytoplasmic arrays. Finally, we present evidence suggesting that this type of receptor is important for the structural stability of the cytoplasmic array.

  10. Phylogenomic analysis of Candidatus 'Izimaplasma' species: free-living representatives from a Tenericutes clade found in methane seeps

    Skennerton CT, Haroon MF, Briegel A, Shi J, Jensen GJ, Tyson GW, Orphan VJ, ISME J 2016 Apr, PMID: 27058507

    Read abstract

    Tenericutes are a unique class of bacteria that lack a cell wall and are typically parasites or commensals of eukaryotic hosts. Environmental 16S rDNA surveys have identified a number of tenericute clades in diverse environments, introducing the possibility that these Tenericutes may represent non-host-associated, free-living microorganisms. Metagenomic sequencing of deep-sea methane seep sediments resulted in the assembly of two genomes from a Tenericutes-affiliated clade currently known as 'NB1-n' (SILVA taxonomy) or 'RF3' (Greengenes taxonomy). Metabolic reconstruction revealed that, like cultured members of the Mollicutes, these 'NB1-n' representatives lack a tricarboxylic acid cycle and instead use anaerobic fermentation of simple sugars for substrate level phosphorylation. Notably, the genomes also contained a number of unique metabolic features including hydrogenases and a simplified electron transport chain containing an RNF complex, cytochrome bd oxidase and complex I. On the basis of the metabolic potential predicted from the annotated genomes, we devised an anaerobic enrichment media that stimulated the growth of these Tenericutes at 10 °C, resulting in a mixed culture where these organisms represented ~60% of the total cells by targeted fluorescence in situ hybridization (FISH). Visual identification by FISH confirmed these organisms were not directly associated with Eukaryotes and electron cryomicroscopy of cells in the enrichment culture confirmed an ultrastructure consistent with the defining phenotypic property of Tenericutes, with a single membrane and no cell wall. On the basis of their unique gene content, phylogenetic placement and ultrastructure, we propose these organisms represent a novel class within the Tenericutes, and suggest the names Candidatus 'Izimaplasma sp. HR1' and Candidatus 'Izimaplasma sp. HR2' for the two genome representatives.The ISME Journal advance online publication, 8 April 2016; doi:10.1038/ismej.2016.55.

  11. Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen

    Willett JW, Herrou J, Briegel A, Rotskoff G, Crosson S, Proc. Natl. Acad. Sci. U.S.A. 2015 Jul;112(28):E3709-18, PMID: 26124143

    Read abstract

    We have functionally and structurally defined an essential protein phosphorelay that regulates expression of genes required for growth, division, and intracellular survival of the global zoonotic pathogen Brucella abortus. Our study delineates phosphoryl transfer through this molecular pathway, which initiates from the sensor kinase CckA and proceeds through the ChpT phosphotransferase to two regulatory substrates: CtrA and CpdR. Genetic perturbation of this system results in defects in cell growth and division site selection, and a specific viability deficit inside human phagocytic cells. Thus, proper control of B. abortus division site polarity is necessary for survival in the intracellular niche. We further define the structural foundations of signaling from the central phosphotransferase, ChpT, to its response regulator substrate, CtrA, and provide evidence that there are at least two modes of interaction between ChpT and CtrA, only one of which is competent to catalyze phosphoryltransfer. The structure and dynamics of the active site on each side of the ChpT homodimer are distinct, supporting a model in which quaternary structure of the 2:2 ChpT-CtrA complex enforces an asymmetric mechanism of phosphoryl transfer between ChpT and CtrA. Our study provides mechanistic understanding, from the cellular to the atomic scale, of a conserved transcriptional regulatory system that controls the cellular and infection biology of B. abortus. More generally, our results provide insight into the structural basis of two-component signal transduction, which is broadly conserved in bacteria, plants, and fungi.

  12. Structural conservation of chemotaxis machinery across Archaea and Bacteria

    Briegel A, Ortega DR, Huang AN, Oikonomou CM, Gunsalus RP, Jensen GJ, Environ Microbiol Rep 2015 Jun;7(3):414-9, PMID: 25581459

    Read abstract

    Chemotaxis allows cells to sense and respond to their environment. In Bacteria, stimuli are detected by arrays of chemoreceptors that relay the signal to a two-component regulatory system. These arrays take the form of highly stereotyped super-lattices comprising hexagonally packed trimers-of-receptor-dimers networked by rings of histidine kinase and coupling proteins. This structure is conserved across chemotactic Bacteria, and between membrane-bound and cytoplasmic arrays, and gives rise to the highly cooperative, dynamic nature of the signalling system. The chemotaxis system, absent in eukaryotes, is also found in Archaea, where its structural details remain uncharacterized. Here we provide evidence that the chemotaxis machinery was not present in the last archaeal common ancestor, but rather was introduced in one of the waves of lateral gene transfer that occurred after the branching of Eukaryota but before the diversification of Euryarchaeota. Unlike in Bacteria, the chemotaxis system then evolved largely vertically in Archaea, with very few subsequent successful lateral gene transfer events. By electron cryotomography, we find that the structure of both membrane-bound and cytoplasmic chemoreceptor arrays is conserved between Bacteria and Archaea, suggesting the fundamental importance of this signalling architecture across diverse prokaryotic lifestyles.

  13. Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling

    Briegel A, Ladinsky MS, Oikonomou C, Jones CW, Harris MJ, Fowler DJ, Chang YW, Thompson LK, Armitage JP, Jensen GJ, Elife 2014;3:e02151, PMID: 24668172

    Read abstract

    Most motile bacteria sense and respond to their environment through a transmembrane chemoreceptor array whose structure and function have been well-studied, but many species also contain an additional cluster of chemoreceptors in their cytoplasm. Although the cytoplasmic cluster is essential for normal chemotaxis in some organisms, its structure and function remain unknown. Here we use electron cryotomography to image the cytoplasmic chemoreceptor cluster in Rhodobacter sphaeroides and Vibrio cholerae. We show that just like transmembrane arrays, cytoplasmic clusters contain trimers-of-receptor-dimers organized in 12-nm hexagonal arrays. In contrast to transmembrane arrays, however, cytoplasmic clusters comprise two CheA/CheW baseplates sandwiching two opposed receptor arrays. We further show that cytoplasmic fragments of normally transmembrane E. coli chemoreceptors form similar sandwiched structures in the presence of molecular crowding agents. Together these results suggest that the 12-nm hexagonal architecture is fundamentally important and that sandwiching and crowding can replace the stabilizing effect of the membrane. DOI: http://dx.doi.org/10.7554/eLife.02151.001.

  14. New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography

    Briegel A, Wong ML, Hodges HL, Oikonomou CM, Piasta KN, Harris MJ, Fowler DJ, Thompson LK, Falke JJ, Kiessling LL, Jensen GJ, Biochemistry 2014 Mar;53(10):1575-85, PMID: 24580139

    Read abstract

    Bacterial chemoreceptors cluster in highly ordered, cooperative, extended arrays with a conserved architecture, but the principles that govern array assembly remain unclear. Here we show images of cellular arrays as well as selected chemoreceptor complexes reconstituted in vitro that reveal new principles of array structure and assembly. First, in every case, receptors clustered in a trimers-of-dimers configuration, suggesting this is a highly favored fundamental building block. Second, these trimers-of-receptor dimers exhibited great versatility in the kinds of contacts they formed with each other and with other components of the signaling pathway, although only one architectural type occurred in native arrays. Third, the membrane, while it likely accelerates the formation of arrays, was neither necessary nor sufficient for lattice formation. Molecular crowding substituted for the stabilizing effect of the membrane and allowed cytoplasmic receptor fragments to form sandwiched lattices that strongly resemble the cytoplasmic chemoreceptor arrays found in some bacterial species. Finally, the effective determinant of array structure seemed to be CheA and CheW, which formed a "superlattice" of alternating CheA-filled and CheA-empty rings that linked receptor trimers-of-dimer units into their native hexagonal lattice. While concomitant overexpression of receptors, CheA, and CheW yielded arrays with native spacing, the CheA occupancy was lower and less ordered, suggesting that temporal and spatial coordination of gene expression driven by a single transcription factor may be vital for full order, or that array overgrowth may trigger a disassembly process. The results described here provide new insights into the assembly intermediates and assembly mechanism of this massive macromolecular complex.

  15. The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signalling state

    Briegel A, Ames P, Gumbart JC, Oikonomou CM, Parkinson JS, Jensen GJ, Mol. Microbiol. 2013 Sep;89(5):831-41, PMID: 23802570

    Read abstract

    Motile bacteria sense their physical and chemical environment through highly cooperative, ordered arrays of chemoreceptors. These signalling complexes phosphorylate a response regulator which in turn governs flagellar motor reversals, driving cells towards favourable environments. The structural changes that translate chemoeffector binding into the appropriate kinase output are not known. Here, we apply high-resolution electron cryotomography to visualize mutant chemoreceptor signalling arrays in well-defined kinase activity states. The arrays were well ordered in all signalling states, with no discernible differences in receptor conformation at 2-3 nm resolution. Differences were observed, however, in a keel-like density that we identify here as CheA kinase domains P1 and P2, the phosphorylation site domain and the binding domain for response regulator target proteins. Mutant receptor arrays with high kinase activities all exhibited small keels and high proteolysis susceptibility, indicative of mobile P1 and P2 domains. In contrast, arrays in kinase-off signalling states exhibited a range of keel sizes. These findings confirm that chemoreceptor arrays do not undergo large structural changes during signalling, and suggest instead that kinase activity is modulated at least in part by changes in the mobility of key domains.

  16. The challenge of determining handedness in electron tomography and the use of DNA origami gold nanoparticle helices as molecular standards

    Briegel A, Pilhofer M, Mastronarde DN, Jensen GJ, J. Struct. Biol. 2013 Jul;183(1):95-8, PMID: 23639902

    Read abstract

    The apparent handedness of an EM-tomography reconstruction depends on a number of conventions and can be confused in many ways. As the number of different hardware and software combinations being used for electron tomography continue to climb, and the reconstructions being produced reach higher and higher resolutions, the need to verify the hand of the results has increased. Here we enumerate various steps in a typical tomography experiment that affect handedness and show that DNA origami gold nanoparticle helices can be used as convenient and fail-safe handedness standards.

  17. General protein diffusion barriers create compartments within bacterial cells

    Schlimpert S, Klein EA, Briegel A, Hughes V, Kahnt J, Bolte K, Maier UG, Brun YV, Jensen GJ, Gitai Z, Thanbichler M, Cell 2012 Dec;151(6):1270-82, PMID: 23201141

    Read abstract

    In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are also widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell-cycle-dependent manner. Their presence is critical for cellular fitness because they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins.

  18. Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins

    Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR, Proc. Natl. Acad. Sci. U.S.A. 2012 Mar;109(10):3766-71, PMID: 22355139

    Read abstract

    Chemoreceptor arrays are supramolecular transmembrane machines of unknown structure that allow bacteria to sense their surroundings and respond by chemotaxis. We have combined X-ray crystallography of purified proteins with electron cryotomography of native arrays inside cells to reveal the arrangement of the component transmembrane receptors, histidine kinases (CheA) and CheW coupling proteins. Trimers of receptor dimers lie at the vertices of a hexagonal lattice in a "two-facing-two" configuration surrounding a ring of alternating CheA regulatory domains (P5) and CheW couplers. Whereas the CheA kinase domains (P4) project downward below the ring, the CheA dimerization domains (P3) link neighboring rings to form an extended, stable array. This highly interconnected protein architecture underlies the remarkable sensitivity and cooperative nature of transmembrane signaling in bacterial chemotaxis.

  19. Activated chemoreceptor arrays remain intact and hexagonally packed

    Briegel A, Beeby M, Thanbichler M, Jensen GJ, Mol. Microbiol. 2011 Nov;82(3):748-57, PMID: 21992450

    Read abstract

    Bacterial chemoreceptors cluster into exquisitively sensitive, tunable, highly ordered, polar arrays. While these arrays serve as paradigms of cell signalling in general, it remains unclear what conformational changes transduce signals from the periplasmic tips, where attractants and repellents bind, to the cytoplasmic signalling domains. Conflicting reports support and contest the hypothesis that activation causes large changes in the packing arrangement of the arrays, up to and including their complete disassembly. Using electron cryotomography, here we show that in Caulobacter crescentus, chemoreceptor arrays in cells grown in different media and immediately after exposure to the attractant galactose all exhibit the same 12 nm hexagonal packing arrangement, array size and other structural parameters. ΔcheB and ΔcheR mutants mimicking attractant- or repellent-bound states prior to adaptation also show the same lattice structure. We conclude that signal transduction and amplification must be accomplished through only small, nanoscale conformational changes.

  20. Structural diversity of bacterial flagellar motors

    Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, Li Z, Shi J, Tocheva EI, Müller A, Dobro MJ, Jensen GJ, EMBO J. 2011 Jul;30(14):2972-81, PMID: 21673657

    Read abstract

    The bacterial flagellum is one of nature's most amazing and well-studied nanomachines. Its cell-wall-anchored motor uses chemical energy to rotate a microns-long filament and propel the bacterium towards nutrients and away from toxins. While much is known about flagellar motors from certain model organisms, their diversity across the bacterial kingdom is less well characterized, allowing the occasional misrepresentation of the motor as an invariant, ideal machine. Here, we present an electron cryotomographical survey of flagellar motor architectures throughout the Bacteria. While a conserved structural core was observed in all 11 bacteria imaged, surprisingly novel and divergent structures as well as different symmetries were observed surrounding the core. Correlating the motor structures with the presence and absence of particular motor genes in each organism suggested the locations of five proteins involved in the export apparatus including FliI, whose position below the C-ring was confirmed by imaging a deletion strain. The combination of conserved and specially-adapted structures seen here sheds light on how this complex protein nanomachine has evolved to meet the needs of different species.

  21. Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria

    Swulius MT, Chen S, Jane Ding H, Li Z, Briegel A, Pilhofer M, Tocheva EI, Lybarger SR, Johnson TL, Sandkvist M, Jensen GJ, Biochem. Biophys. Res. Commun. 2011 Apr;407(4):650-5, PMID: 21419100

    Read abstract

    How rod-shaped bacteria form and maintain their shape is an important question in bacterial cell biology. Results from fluorescent light microscopy have led many to believe that the actin homolog MreB and a number of other proteins form long helical filaments along the inner membrane of the cell. Here we show using electron cryotomography of six different rod-shaped bacterial species, at macromolecular resolution, that no long (> 80 nm) helical filaments exist near or along either surface of the inner membrane. We also use correlated cryo-fluorescent light microscopy (cryo-fLM) and electron cryo-tomography (ECT) to identify cytoplasmic bundles of MreB, showing that MreB filaments are detectable by ECT. In light of these results, the structure and function of MreB must be reconsidered: instead of acting as a large, rigid scaffold that localizes cell-wall synthetic machinery, moving MreB complexes may apply tension to growing peptidoglycan strands to ensure their orderly, linear insertion.

  22. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus

    Möll A, Schlimpert S, Briegel A, Jensen GJ, Thanbichler M, Mol. Microbiol. 2010 Jul;77(1):90-107, PMID: 20497502

    Read abstract

    In bacteria, cytokinesis is dependent on lytic enzymes that facilitate remodelling of the cell wall during constriction. In this work, we identify a thus far uncharacterized periplasmic protein, DipM, that is required for cell division and polarity in Caulobacter crescentus. DipM is composed of four peptidoglycan binding (LysM) domains and a C-terminal lysostaphin-like (LytM) peptidase domain. It binds to isolated murein sacculi in vitro, and is recruited to the site of constriction through interaction with the cell division protein FtsN. Mutational analyses showed that the LysM domains are necessary and sufficient for localization of DipM, while its peptidase domain is essential for function. Consistent with a role in cell wall hydrolysis, DipM was found to interact with purified murein sacculi in vitro and to induce cell lysis upon overproduction. Its inactivation causes severe defects in outer membrane invagination, resulting in a significant delay between cytoplasmic compartmentalization and final separation of the daughter cells. Overall, these findings indicate that DipM is a periplasmic component of the C. crescentus divisome that facilitates remodelling of the peptidoglycan layer and, thus, coordinated constriction of the cell envelope during the division process.

  23. Electron cryotomography of bacterial cells

    Chen S, McDowall A, Dobro MJ, Briegel A, Ladinsky M, Shi J, Tocheva EI, Beeby M, Pilhofer M, Ding HJ, Li Z, Gan L, Morris DM, Jensen GJ, , PMID: 20461053

    Read abstract

    While much is already known about the basic metabolism of bacterial cells, many fundamental questions are still surprisingly unanswered, including for instance how they generate and maintain specific cell shapes, establish polarity, segregate their genomes, and divide. In order to understand these phenomena, imaging technologies are needed that bridge the resolution gap between fluorescence light microscopy and higher-resolution methods such as X-ray crystallography and NMR spectroscopy. Electron cryotomography (ECT) is an emerging technology that does just this, allowing the ultrastructure of cells to be visualized in a near-native state, in three dimensions (3D), with "macromolecular" resolution (approximately 4nm).(1, 2) In ECT, cells are imaged in a vitreous, "frozen-hydrated" state in a cryo transmission electron microscope (cryoTEM) at low temperature (< -180 degrees C). For slender cells (up to approximately 500 nm in thickness(3)), intact cells are plunge-frozen within media across EM grids in cryogens such as ethane or ethane/propane mixtures. Thicker cells and biofilms can also be imaged in a vitreous state by first "high-pressure freezing" and then, "cryo-sectioning" them. A series of two-dimensional projection images are then collected through the sample as it is incrementally tilted along one or two axes. A three-dimensional reconstruction, or "tomogram" can then be calculated from the images. While ECT requires expensive instrumentation, in recent years, it has been used in a few labs to reveal the structures of various external appendages, the structures of different cell envelopes, the positions and structures of cytoskeletal filaments, and the locations and architectures of large macromolecular assemblies such as flagellar motors, internal compartments and chemoreceptor arrays.(1, 2) In this video article we illustrate how to image cells with ECT, including the processes of sample preparation, data collection, tomogram reconstruction, and interpretation of the results through segmentation and in some cases correlation with light microscopy.

  24. Mutations in the Lipopolysaccharide biosynthesis pathway interfere with crescentin-mediated cell curvature in Caulobacter crescentus

    Cabeen MT, Murolo MA, Briegel A, Bui NK, Vollmer W, Ausmees N, Jensen GJ, Jacobs-Wagner C, J. Bacteriol. 2010 Jul;192(13):3368-78, PMID: 20435724

    Read abstract

    Bacterial cell morphogenesis requires coordination among multiple cellular systems, including the bacterial cytoskeleton and the cell wall. In the vibrioid bacterium Caulobacter crescentus, the intermediate filament-like protein crescentin forms a cell envelope-associated cytoskeletal structure that controls cell wall growth to generate cell curvature. We undertook a genetic screen to find other cellular components important for cell curvature. Here we report that deletion of a gene (wbqL) involved in the lipopolysaccharide (LPS) biosynthesis pathway abolishes cell curvature. Loss of WbqL function leads to the accumulation of an aberrant O-polysaccharide species and to the release of the S layer in the culture medium. Epistasis and microscopy experiments show that neither S-layer nor O-polysaccharide production is required for curved cell morphology per se but that production of the altered O-polysaccharide species abolishes cell curvature by apparently interfering with the ability of the crescentin structure to associate with the cell envelope. Our data suggest that perturbations in a cellular pathway that is itself fully dispensable for cell curvature can cause a disruption of cell morphogenesis, highlighting the delicate harmony among unrelated cellular systems. Using the wbqL mutant, we also show that the normal assembly and growth properties of the crescentin structure are independent of its association with the cell envelope. However, this envelope association is important for facilitating the local disruption of the stable crescentin structure at the division site during cytokinesis.

  25. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus

    Kühn J, Briegel A, Mörschel E, Kahnt J, Leser K, Wick S, Jensen GJ, Thanbichler M, EMBO J. 2010 Jan;29(2):327-39, PMID: 19959992

    Read abstract

    The cytoskeleton has a key function in the temporal and spatial organization of both prokaryotic and eukaryotic cells. Here, we report the identification of a new class of polymer-forming proteins, termed bactofilins, that are widely conserved among bacteria. In Caulobacter crescentus, two bactofilin paralogues cooperate to form a sheet-like structure lining the cytoplasmic membrane in proximity of the stalked cell pole. These assemblies mediate polar localization of a peptidoglycan synthase involved in stalk morphogenesis, thus complementing the function of the actin-like cytoskeleton and the cell division machinery in the regulation of cell wall biogenesis. In other bacteria, bactofilins can establish rod-shaped filaments or associate with the cell division apparatus, indicating considerable structural and functional flexibility. Bactofilins polymerize spontaneously in the absence of additional cofactors in vitro, forming stable ribbon- or rod-like filament bundles. Our results suggest that these structures have evolved as an alternative to intermediate filaments, serving as versatile molecular scaffolds in a variety of cellular pathways.

  26. Universal architecture of bacterial chemoreceptor arrays

    Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z, Chen S, Müller A, Iancu CV, Murphy GE, Dobro MJ, Zhulin IB, Jensen GJ, Proc. Natl. Acad. Sci. U.S.A. 2009 Oct;106(40):17181-6, PMID: 19805102

    Read abstract

    Chemoreceptors are key components of the high-performance signal transduction system that controls bacterial chemotaxis. Chemoreceptors are typically localized in a cluster at the cell pole, where interactions among the receptors in the cluster are thought to contribute to the high sensitivity, wide dynamic range, and precise adaptation of the signaling system. Previous structural and genomic studies have produced conflicting models, however, for the arrangement of the chemoreceptors in the clusters. Using whole-cell electron cryo-tomography, here we show that chemoreceptors of different classes and in many different species representing several major bacterial phyla are all arranged into a highly conserved, 12-nm hexagonal array consistent with the proposed "trimer of dimers" organization. The various observed lengths of the receptors confirm current models for the methylation, flexible bundle, signaling, and linker sub-domains in vivo. Our results suggest that the basic mechanism and function of receptor clustering is universal among bacterial species and was thus conserved during evolution.

  27. Location and architecture of the Caulobacter crescentus chemoreceptor array

    Briegel A, Ding HJ, Li Z, Werner J, Gitai Z, Dias DP, Jensen RB, Jensen GJ, Mol. Microbiol. 2008 Jul;69(1):30-41, PMID: 18363791

    Read abstract

    A new method for recording both fluorescence and cryo-EM images of small bacterial cells was developed and used to identify chemoreceptor arrays in cryotomograms of intact Caulobacter crescentus cells. We show that in wild-type cells preserved in a near-native state, the chemoreceptors are hexagonally packed with a lattice spacing of 12 nm, just a few tens of nanometers away from the flagellar motor that they control. The arrays were always found on the convex side of the cell, further demonstrating that Caulobacter cells maintain dorsal/ventral as well as anterior/posterior asymmetry. Placing the known crystal structure of a trimer of receptor dimers at each vertex of the lattice accounts well for the density and agrees with other constraints. Based on this model for the arrangement of receptors, there are between one and two thousand receptors per array.

  28. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter

    Ebersbach G, Briegel A, Jensen GJ, Jacobs-Wagner C, Cell 2008 Sep;134(6):956-68, PMID: 18805089

    Read abstract

    Cell polarization is an integral part of many unrelated bacterial processes. How intrinsic cell polarization is achieved is poorly understood. Here, we provide evidence that Caulobacter crescentus uses a multimeric pole-organizing factor (PopZ) that serves as a hub to concurrently achieve several polarizing functions. During chromosome segregation, polar PopZ captures the ParB*ori complex and thereby anchors sister chromosomes at opposite poles. This step is essential for stabilizing bipolar gradients of a cell division inhibitor and setting up division near midcell. PopZ also affects polar stalk morphogenesis and mediates the polar localization of the morphogenetic and cell cycle signaling proteins CckA and DivJ. Polar accumulation of PopZ, which is central to its polarizing activity, can be achieved independently of division and does not appear to be dictated by the pole curvature. Instead, evidence suggests that localization of PopZ largely relies on PopZ multimerization in chromosome-free regions, consistent with a self-organizing mechanism.

  29. Stygiolobus rod-shaped virus and the interplay of crenarchaeal rudiviruses with the CRISPR antiviral system

    Vestergaard G, Shah SA, Bize A, Reitberger W, Reuter M, Phan H, Briegel A, Rachel R, Garrett RA, Prangishvili D, J. Bacteriol. 2008 Oct;190(20):6837-45, PMID: 18723627

    Read abstract

    A newly characterized archaeal rudivirus Stygiolobus rod-shaped virus (SRV), which infects a hyperthermophilic Stygiolobus species, was isolated from a hot spring in the Azores, Portugal. Its virions are rod-shaped, 702 (+/- 50) by 22 (+/- 3) nm in size, and nonenveloped and carry three tail fibers at each terminus. The linear double-stranded DNA genome contains 28,096 bp and an inverted terminal repeat of 1,030 bp. The SRV shows morphological and genomic similarities to the other characterized rudiviruses Sulfolobus rod-shaped virus 1 (SIRV1), SIRV2, and Acidianus rod-shaped virus 1, isolated from hot acidic springs of Iceland and Italy. The single major rudiviral structural protein is shown to generate long tubular structures in vitro of similar dimensions to those of the virion, and we estimate that the virion constitutes a single, superhelical, double-stranded DNA embedded into such a protein structure. Three additional minor conserved structural proteins are also identified. Ubiquitous rudiviral proteins with assigned functions include glycosyl transferases and a S-adenosylmethionine-dependent methyltransferase, as well as a Holliday junction resolvase, a transcriptionally coupled helicase and nuclease implicated in DNA replication. Analysis of matches between known crenarchaeal chromosomal CRISPR spacer sequences, implicated in a viral defense system, and rudiviral genomes revealed that about 10% of the 3,042 unique acidothermophile spacers yield significant matches to rudiviral genomes, with a bias to highly conserved protein genes, consistent with the widespread presence of rudiviruses in hot acidophilic environments. We propose that the 12-bp indels which are commonly found in conserved rudiviral protein genes may be generated as a reaction to the presence of the host CRISPR defense system.

  30. Tetrasphaera remsis sp. nov., isolated from the Regenerative Enclosed Life Support Module Simulator (REMS) air system

    Osman S, Moissl C, Hosoya N, Briegel A, Mayilraj S, Satomi M, Venkateswaran K, Int. J. Syst. Evol. Microbiol. 2007 Dec;57(Pt 12):2749-53, PMID: 18048719

    Read abstract

    Two Gram-positive, coccoid, non-spore-forming bacteria (strains 3-M5-R-4(T) and 3-M5-R-7), cells of which formed diploid, tetrad and cluster arrangements, were isolated from air of the Regenerative Enclosed Life Support Module Simulator system. On the basis of 16S rRNA gene sequence similarity, these strains were shown to belong to the family Intrasporangiaceae and were related to members of the genus Tetrasphaera, with similarities to the seven known species of the genus Tetrasphaera of 96.71-97.76 %. The fatty acid profile supported affiliation of these novel isolates to the genus Tetrasphaera, although larger amounts of octadecanoic acid (C(18 : 0)) and cis-9-octadecenoic acid (C(18 : 1)) were observed in the isolates, thus enabling them to be differentiated from other Tetrasphaera species. In addition, DNA-DNA hybridization studies indicated that these strains belonged to a novel species that could be readily distinguished from its nearest neighbour, Tetrasphaera japonica DSM 13192(T), which had less than 20 % DNA-DNA relatedness. Physiological and biochemical tests showed few phenotypic differences, but genotypic analysis enabled these gelatin-liquefying strains to be differentiated from the seven Tetrasphaera species. The strains described in this study therefore represent a novel species, for which the name Tetrasphaera remsis sp. nov. is proposed; the type strain is 3-M5-R-4(T) (=ATCC BAA-1496(T) =CIP 109413(T)).

  31. How electron cryotomography is opening a new window onto prokaryotic ultrastructure

    Jensen GJ, Briegel A, Curr. Opin. Struct. Biol. 2007 Apr;17(2):260-7, PMID: 17398087

    Read abstract

    Electron cryotomography is an emerging technology that enables thin samples, including small intact prokaryotic cells, to be imaged in three dimensions in a near-native 'frozen-hydrated' state to a resolution sufficient to recognize very large macromolecular complexes in situ. Following years of visionary technology development by a few key pioneers, several laboratories are now using the technique to produce biological results of major significance in the field of prokaryotic ultrastructure. Recent discoveries have included the surprising generality and complexity of the cytoskeleton, the connectivity of key membrane compartments, the location and architecture of large macromolecular machines such as the ribosome and flagellar motors, and the structure of some extraordinary external appendages. Through further technology development, identification of the most revealing model systems and sustained effort, electron cryotomography is poised to help resolve many fundamentally important questions about prokaryotic ultrastructure.

  32. Electron cryotomography sample preparation using the Vitrobot

    Iancu CV, Tivol WF, Schooler JB, Dias DP, Henderson GP, Murphy GE, Wright ER, Li Z, Yu Z, Briegel A, Gan L, He Y, Jensen GJ, Nat Protoc 2006;1(6):2813-9, PMID: 17406539

    Read abstract

    Electron cryotomography is the highest-resolution structural technique currently available that can be applied to unique objects such as flexible large protein complexes, irregular viruses, organelles and small cells. Specimens are preserved in a near-native, 'frozen-hydrated' state by vitrification. The thickness of the vitreous ice must be optimized for each specimen, and gold fiducials are typically added to facilitate image alignment. Here, we describe in detail our protocols for electron cryotomography sample preparation including (i) introduction of fiducial markers into the sample and (ii) sample vitrification. Because we almost exclusively use an automated, climate-controlled plunge-freezing device (the FEI Vitrobot) to vitrify our samples, we discuss its operation and parameters in detail. A session in which eight grids are prepared takes 1.5-2 h.

  33. Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography

    Briegel A, Dias DP, Li Z, Jensen RB, Frangakis AS, Jensen GJ, Mol. Microbiol. 2006 Oct;62(1):5-14, PMID: 16987173

    Read abstract

    While the absence of any cytoskeleton was once recognized as a distinguishing feature of prokaryotes, it is now clear that a number of different bacterial proteins do form filaments in vivo. Despite the critical roles these proteins play in cell shape, genome segregation and cell division, molecular mechanisms have remained obscure in part for lack of electron microscopy-resolution images where these filaments can be seen acting within their cellular context. Here, electron cryotomography was used to image the widely studied model prokaryote Caulobacter crescentus in an intact, near-native state, producing three-dimensional reconstructions of these cells with unprecedented clarity and fidelity. We observed many instances of large filament bundles in various locations throughout the cell and at different stages of the cell cycle. The bundles appear to fall into four major classes based on shape and location, referred to here as 'inner curvature', 'cytoplasmic', 'polar' and 'ring-like'. In an attempt to identify at least some of the filaments, we imaged cells where crescentin and MreB filaments would not be present. The inner curvature and cytoplasmic bundles persisted, which together with their localization patterns, suggest that they are composed of as-yet unidentified cytoskeletal proteins. Thus bacterial filaments are frequently found as bundles, and their variety and abundance is greater than previously suspected.

  34. The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks

    Moissl C, Rachel R, Briegel A, Engelhardt H, Huber R, Mol. Microbiol. 2005 Apr;56(2):361-70, PMID: 15813730

    Read abstract

    Proteinaceous, hair-like appendages known as fimbriae or pili commonly extend from the surface of prokaryotic cells and serve important functions such as cell adhesion, biofilm formation, motility and DNA transfer. Here we show that a novel group of archaea from cold, sulphidic springs has developed cell surface appendages of an unexpectedly high complexity with a well-defined base-to-top organization. It represents a new class of filamentous cell appendages, for which the term 'hamus' is proposed. Each archaeal cell is surrounded by a halo of about 100 hami, which mediate strong adhesion of the cells to surfaces of different chemical composition. The hami are mainly composed of 120 kDa subunits and remained stable in a broad temperature and pH range (0-70 degrees C; 0.5-11.5). Electron microscopy and cryo-electron tomography revealed that the hamus filament possesses a helical basic structure. At periodic distances, three prickles emanate from the filament, giving it the character of industrially produced barbwire. At its distal end the hami carry a tripartite, barbed grappling hook (60 nm in diameter). The architecture of this molecular hook is reminiscent of man-made fishhooks, grapples and anchors. It appears that nature has developed a perfect mechanical nano-tool in the course of biological evolution, which also might prove useful in the field of nanobiotechnology.

  35. Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell-cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography

    Junglas B, Briegel A, Burghardt T, Walther P, Wirth R, Huber H, Rachel R, ,

    Read abstract